
Fireplug: Flexible and Robust N-version
Geo-Replication of Graph Databases

Ray Neiheiser∗, Daniel Presser∗, Luciana Rech∗, Manuel Bravo‡, Luı́s Rodrigues‡, Miguel Correia‡
∗Departamento de Informática e Estatı́stica, Universidade Federal De Santa Catarina

‡INESC-ID, Instituto Superior Técnico, Universidade de Lisboa

Abstract—The paper describes and evaluates Fireplug, a flex-
ible architecture to build robust geo-replicated graph databases.
Fireplug can be configured to tolerate from crash to Byzantine
faults, both within and across different datacenters. Furthermore,
Fireplug is robust to bugs in existing graph database imple-
mentations, as it allows to combine multiple graph databases
instances in a cohesive manner. Thus, Fireplug can support many
different deployments, according to the performance/robustness
tradeoffs imposed by the target application. Our evaluation shows
that Fireplug can implement Byzantine fault tolerance in geo-
replicated scenarios and still outperform the built-in replication
mechanism of Neo4j, which only supports crash faults.

Index Terms—Graph databases, Geo-replication, N-version
programming, Byzantine faults.

I. INTRODUCTION

Graphs offer an elegant data representation for problems
that would not be easily expressed otherwise. In fact, many
areas benefit from the use of graphs, including social sciences,
natural sciences, engineering, and economics [1]. Unsurpris-
ingly, the increasing number and relevance of applications
using graphs as a data model spurred the development of
several graph databases, which are optimized to support graph
storage and query. Examples include Neo4j [2], OrientDB [3]
and TAO [4]. These specialized databases have been shown
to outperform classical relational databases to support graph
processing: for instance, Neo4j was shown to be 3x faster than
MySQL on several tasks, such as graph traversal [5].

Interestingly, some of the applications that leverage graph
databases often require simultaneously strong consistency,
security, and scalability [6]. For instance, Neo4j and OrientDB
customers include security firms, investigation units, media
companies (Sky, Comcast, Warner), and trade companies
(Ebay or Global 500 Logistics), which use graph databases
to offer real time product routing and delivery to their clients
[6], [7]. Therefore, deriving solutions that can replicate graph-
databases in an efficient and robust manner, is a challenge not
only of technical interest but also of practical relevance.

In this paper, we describe the design and implementation of
Fireplug, a flexible architecture to build robust geo-replicated
transactional graph databases. Its key features are:
• Fireplug supports both intra- and inter-datacenter replica-

tion. Thus, it tolerates both errors that are common when
using commodity hardware, and natural or human-caused
disasters. Replication also has the potential to reduce latency
by letting clients interact with the closest datacenter(s), and
to enhance scalability under read-dominated workloads.

• Fireplug implements a novel Byzantine fault-tolerant de-
ferred update replication protocol, specialized for graph
databases. Tolerating Byzantine faults is fundamental as the
causes for both natural and human-driven Byzantine faults
are becoming more prevalent, including for instance, the
increasing gate density in silicon and the threat of cyber-
criminality. Furthermore, Byzantine faults can cause serious
revenue loss, e.g., the Stuxnet worm [8], identified in 2010,
that caused substantial delays in nuclear research at Iran.
More recently, the attack on the Linux Mint distribution in
2016 [9], in which a corrupted version was uploaded to their
site, compromising users that installed it.

• Fireplug supports software diversity and implements N-
version programming [10] to shield the system from bugs
and attacks to vulnerabilities of specific graph databases’
implementations: code made by independent teams, even
using different programming languages, that goes through
different release procedures, is less likely to suffer from the
same bugs. Graph databases are large open source projects,
where it is hard to eliminate all vulnerabilities that can be
exploited by attackers (via buffer overflows, query language
attacks, etc.). In 2016 only, a long list of open-source
software with critical security flaws has been identified [11].
Examples include vulnerabilities in the glibc Linux library,
in MySQL, and in OpenJDK. Fireplug currently supports 4
graph databases: Neo4j, OrientDB, Titan, and Sparksee.

• Fireplug’s architecture is flexible. The goal is to allow a
variety of configurations of the system such that application
fault tolerance and performance requirements are met. For
instance, N-version programming can be used to make each
datacenter Byzantine fault-tolerant and then just assume
crash faults at the level of an entire datacenter, making
inter-datacenter replication more efficient. However, if one
is concerned with attacks that can compromise an entire
datacenter, one can also make the inter-datacenter operation
Byzantine fault-tolerant. Fireplug can also be configured to
run in a single datacenter and to tolerate only crash faults;
this is interesting because Fireplug outperforms the native
replication scheme protocols of the graph databases, as these
single master and do not benefit of the multiple replicas.

The system has been extensively evaluated. We have ob-
served that Fireplug outperforms the native replication mech-
anism of Neo4j when tolerating not only crash faults (as
Neo4j) but also Byzantine faults. Additionally, our architecture



shows significant performance gains when compared to more
traditional architectures.

In summary, this paper’s contributions are: (i) the first
application of diversity and N-version programming for graph
databases; (ii) Graph-DUR, a specialization of deferred update
replication for graph databases; (iii) a flexible architecture,
deployable to tolerate different fault types and settings; (iv) an
open-source implementation of the resulting prototype1.

II. RELATED WORK

Database Replication. Many replication techniques leverage
the existence of an atomic broadcast primitive like Paxos
[12]—and its variants—which is one of the most widely used
protocols, for tolerating not only crash faults [13] but also
Byzantine faults [14], [15]. Not surprisingly, a number of
previous works have also considered the deployment of atomic
broadcast protocols across multiple datacenters [16]–[18].

Among these techniques, Deferred Update Replication
(DUR) has been shown to be particularly effective [19]. In
DUR, a transaction is executed only against one local replica;
such that writes are locally cached, and reads are served
locally. On commit time, the transaction’s write and read set
are sent to other replicas for validation, by means of an atomic
broadcast. If no conflicts are detected, writes are atomically
executed, otherwise these are discarded, and the transaction
aborted. Of particular interest to us is the work of [20], that in-
troduces an implementation of DUR able to tolerate Byzantine
faults. Fireplug uses a variant of this last protocol that, unlike
previous solutions, is specially designed for graph databases.
The differences between our specialized DUR variant and [20]
are twofold: our implementation considers graph semantics;
and we avoid digital signatures for validating reads, expensive
otherwise in graph workloads (§IV further elaborates on this).
N-version Programming Research on N-version program-
ming, or software diversity, started in the 1970s and raised
considerable interest [21]. As discussed in [21], faults are
often caused by design flaws. N-version programming aims at
tolerating these design faults, using a range of independently-
designed software elements, which also has been shown to
decrease the likelihood of malicious intruders [22]. Unfortu-
nately, due to the large deployment effort required to combine
enough distinct implementations, N-version programming is—
with a few exceptions [23]—seldom used practice.

MITRA [24] is an example of the use of software diversity
to shield the system from Byzantine faults. Although it is
designed for relational databases, a similar approach may be
an asset when replicating graph databases.
Graph Databases. Graph Databases [25] are database man-
agement systems that have been optimized to store, query
and update graph structures. In graph databases relationships
are first-class citizens on the graph data model. This is not
true in other database management systems, where relations
between entities have to be inferred using other abstractions
such as foreign keys, making the task of querying the graph an

1https://github.com/Raycoms/fireplug

inefficient join-intensive procedure. To avoid these limitations,
graph databases store pointers in the corresponding vertices
and edges. Fireplug gathers a set of features that make it
unique when compared to other graph databases. First, it
efficiently tolerates not only crash faults but also Byzantine
faults. Many graph databases implement a variant of semi-
active replication for fault tolerance, but they tolerates only
crash faults; they do not consider Byzantine faults. Finally,
above all, it shields the system from software vulnerabilities
by relying on software diversity.

III. FIREPLUG OVERVIEW

Fireplug is a transactional graph database management
system. It is designed to run in one or more datacenters.
Each datacenter runs one or several nodes (or servers) and
each node runs a (potentially different) instance of the graph
database. We target a full replication scenario, where all nodes
maintain a full copy of the graph. Typically, the latency among
nodes residing within the same datacenter is much smaller than
the latency among nodes in different datacenters. This may
have an impact on the performance of Fireplug but not on its
correctness, as we assume an asynchronous system model.

Fireplug offers flexibility at multiple levels. (i) Each node
can be configured to run a different graph database. Currently,
Fireplug supports Neo4j, OrientDB, Titan, and Sparksee.
These graph databases may be oblivious to the Fireplug repli-
cation mechanisms but, still, the resulting assembly behaves
as a single, serializable, database. (ii) It permits multiple fault
models to coexist in a single deployment. Note that in a system
where all nodes must be configured to tolerate the same type
of faults, one may be forced to choose the most restrictive
model, unnecessarily degrading overall system’s performance.

A. System Components

The main software components of Fireplug are (Figure 1):
• The application front-end machines, which we designate by

clients. We assume that clients receive end-user requests and
run the application.

• A middleware integration layer called the common GRAph
DAtabase replication Middleware (GRADAM). Its goal is
to support the inter-operation of multiple graph databases in
a cohesive environment by unifying their interface, as each
database is likely to offer a slightly different interface.

• A proxy that provides a uniform interface to the graph
database so that GRADAM can abstract away these details.

• A replication protocol, Graph-DUR, that implements de-
ferred update replication tolerant to Byzantine faults and
specifically designed for graph databases.

• As part of Graph-DUR, Fireplug implements Hierarchical
BFT-SMaRt, an atomic broadcast abstraction implemented
as a hierarchical composition of multiple instances of the
BFT-SMaRt service [15].

B. System Operation

Clients connect to an instance of GRADAM typically at
the closest server and coordinate the execution of transac-

2

https://github.com/Raycoms/fireplug


GRADAM

API
Client

Global Group
Local Group 1 Local Group 2Primary Primary

Hierarchical BFT-SMART

Proxy

GRADAM

Proxy

GRADAM

Proxy

GRADAM

Proxy

API
Client

API
Client

API
Client

Fig. 1: Fireplug architecture.

tions that are composed of several read and write opera-
tions. Transactions are marked by the startTransaction and
endTransaction delimiters. The responsibility of a GRADAM
instance is twofold: (i) it bridges local clients with the local
graph database instance, translating between the common
interface (the one exposed to clients) and each particular
graph database interface; (ii) it interacts with the remaining
GRADAM instances, running on remote replicas, to ensure
that all transactions that commit are serializable.

The communication among multiple GRADAM instances
running at different nodes is coordinated by our own im-
plementation of a DUR protocol. The explicit exchange of
message among instances is done using an atomic broadcast
abstraction. This can be configured to tolerate both crash and
Byzantine faults, and to offer different qualities of service.
As already mentioned, the atomic broadcast service leverages
BFT-SMaRt [15], an open source library that implements
Byzantine-tolerant state machine replication. Our implementa-
tion uses a hierarchical combination of multiple BFT-SMaRt
groups and makes use of two broadcast services offered by
BFT-SMaRt, namely a (non-ordered) reliable broadcast and a
(totally ordered) atomic broadcast (later detailed in §IV-D).

IV. GRAPH-DUR: REPLICATION IN FIREPLUG

Replication in Fireplug is managed using a variant of the
Byzantine-tolerant DUR proposed in [20]. We first discuss the
major differences between our implementation, Graph-DUR,
and [20]. Then, we describe how update and read-only trans-
actions are processed. Finally, we detail the implementation
of the atomic broadcast primitive integrated into Fireplug, a
fundamental abstraction for Graph-DUR.

A. Adaptation of DUR for Graph Databases

Semantic-Awareness. Graph-DUR considers the semantics of
the graph structure in an effort to reduce conflicts, a technique
commonly used in both transactional memory [26], [27] and
geo-replicated distributed systems [28], [29].

First, clients can potentially merge updates before pushing
them to Fireplug to reduce the size of transactions; e.g.,
updating a vertex can be merged with its preceding vertex
creation request, and deleting a vertex invalidates preceding
updates or creations on the same vertex.

Second, the conflict detection algorithm has been adapted
to also take the semantics of graph operations into account.

Differently to relational databases—where concurrent opera-
tions over the same key trigger a conflict—there is, in graph
databases, an opportunity to reduce conflicts—and enhance
performance—by detecting commutativity among some op-
erations. For instance, imagine two concurrent transactions
attempting to remove the same vertex from the graph. In a
transactional NoSQL database the conflict detection algorithm
would abort one of the two as removing the same vertex
would be considered as a conflict (both ‘update’ the same key).
Our conflict detection algorithm considers both operations as
commutative, allowing both to commit. In order to implement
such conflict detection algorithm, Graph-DUR requires clients
to explicitly track not only reads and writes, but also create
and delete operations. Thus, commutative operations can be
efficiently spotted at the certification phase and unnecessary
aborts are precluded.
Signature-free Read Validation. In a Byzantine-tolerant set-
ting a single instance of the database cannot be trusted. If the
instance is faulty, it may return bogus or stale data. In [20]
this is addressed by having the servers sign every data item.
In the case of relational database this is valid because it
is possible to sign tables or sections. Nevertheless, in our
case, this is not a viable option. Graph databases store their
data in fairly independent nodes and relationships. Therefore,
implementing this mechanism would imply signing every node
and relationship in the graph, adding a severe overhead.

Therefore, we validate read-only transactions by comparing
the contents of different instances. In order to decrease the
complexity and delay caused by global validation, we propose
several optimizations in IV-C.

B. Update Transactions
Update transactions are executed following the DUR al-

gorithm: optimistically against a single replica (typically the
closest one) and validated in parallel by all replicas in total
order, to ensure serializability. As a result of our algorithm, all
correct replicas certify the same sequence of transactions, in
the same order. Thus, all correct replicas will reach a consistent
decision regarding the commit or abort of the transaction.

Algorithm 1 depicts the node-side (or server-side) protocol.
A client first selects a node. Then, it requests the identifier of
the current snapshot of the database. To ensure serializability,
every time a new value is read, its timestamp is checked to see
if the transaction is reading from the same snapshot. If not,
this means that another update transaction has been committed,
and the transaction will be aborted. Writes, deletions, and
creations are cached at the client. When the transaction is
ready to commit, the transaction is sent for certification. A
totally ordered broadcast is used, to ensure that all servers
certify the transactions in the same order. If the transaction
passes the certification, it is committed by all nodes; otherwise
it is aborted and all updates discarded.

The main differences to classical DUR are, as noted above,
the need to keep separate read, write, create, and delete sets at
the client, and the need to use a conflict detection algorithm
that takes the semantics of the graph operations into account.

3



Algorithm 1 Server code
1: global ts = 0 . Initiate global snapshot Id
2: function GET SETVER TS
3: return global ts
4: function SERVER READ(oid)
5: (oid, v, ts) ← RETRIEVE(oid)
6: function VALIDATE READSET(read set)
7: for ∀ (oid, v, ts) ∈ read set do
8: (oid, v’, ts’) ← RETRIEVE(oid)
9: if v 6= v′ or ts 6= t′ then

10: return abort
11: function VALIDATE UPDATESET(ts, w set, d set, c set)
12: for ∀ (oid, v) ∈ c set ∪ d set ∪ w set do
13: (oid, v’, ts’) ← RETRIEVE(oid)
14: if ts < t′ then
15: return abort
16: function COMMIT(ts, t.RS, t.WS, t.DS, t.CS) . called in total order
17: result ← VALIDATE READSET(t.RS)
18: if result = abort then
19: return abort
20: result ← VALIDATE UPDATESET(ts,t.WS, t.DS, t.CS)
21: if result = abort then
22: return abort
23: global ts ← global ts+1
24: APPLY UPDATES(global ts, t.WS, t.DS, t.CS)

C. Read-only Transactions

To improve performance, read-only transactions are exe-
cuted differently from classical DUR. Fireplug supports read-
only transactions with 2 different resilience levels: locally-safe
reads, that cross check the results using two replicas of the
same datacenter and; globally-safe reads, that cross check the
results using nodes of different datacenters (globally-safe reads
should be used if there is the threat of an entire datacenter
becoming compromised). Read transactions are always first
executed optimistically in a single replica and then sent—
through the non-ordered channel—to f + 1 replicas for cross
validation. If the cross validation fails, read transactions are
re-executed in pessimistic mode, similarly update transactions.
Although, this may cause additional overhead in the worst
case, given that workloads in graph databases are typically
read-dominated [4], in most of the cases, the validation will
succeed without requiring the execution of a totally ordered
broadcast. This brings significant performance gains in the
most frequent case.

Note that locally-safe reads do not guarantee reading the
newest data committed globally. Therefore, using this prim-
itive, Fireplug guarantees snapshot isolation [30] instead of
serializability. Nevertheless, this is still a useful and pow-
erful criterion, the default in major database engines such
as Oracle or Microsoft SQL Server, which brings significant
performance improvements (as shown in §V-B).

D. Hierarchical Atomic Broadcast

Graph-DUR requires the execution of an atomic (totally)
ordered broadcast primitive across multiple datacenters. We
have implemented this primitive as a hierarchical composition
of multiple instances of the BFT-SMaRt service.

The general architecture of the implementation is depicted
in Figure 2. In each datacenter, we setup an atomic broadcast
group that coordinates all replicas that reside in that datacenter.

1 2

0

1

2

0

3

local 0

1

2

0

3

1 0

2

local 2

local 3 global local 1

Fig. 2: Hierarchical architecture.

Then, one replica from each datacenter is elected to participate
in an inter-datacenter atomic broadcast group—we refer to
each of these nodes as primary. Thus, instead of coordinating
all replicas in a single large atomic broadcast group—an
approach that we refer as flat, coordination is achieved by
executing a sequence of actions on the smaller intra-datacenter
and inter-datacenter atomic broadcast groups. We denote the
inter-datacenter group simply as the global group and the
internal group in datacenter i as locali. For liveness, we
assume that the system is augmented with an unreliable failure
detector that can trigger the change of a faulty or stalled leader.

The global group can be configured to tolerate both crash
or Byzantine faults, requiring 2f + 1 or 3f + 1 participants
respectively. Note that if the global group is configured to
tolerate Byzantine faults, and less than 3f +1 datacenters are
available, datacenters may have to participate in the global
group with more than one node. Local groups can also be
either crash- or Byzantine-tolerant, offering extra flexibility
when configuring the system to improve performance. If the
global group is configured to only tolerate crashes, local
groups will not be able to tolerate Byzantine faults.

1) General Structure of the Protocol: The protocol operates
as follows. First, the client forwards an update transaction t
to the global group. In turn, the global group decides on an
order for t by relying on the underlaying atomic broadcast
abstraction. If the nodes decide to commit the transaction after
checking for conflicts, each primary broadcasts t, together with
the assigned timestamp, to its local group. A receiving node,
only applies t if all transactions with a timestamp smaller than
t’s timestamp have already been applied.

If the global group is configured to tolerate Byzantine faults,
there is an extra step in the protocol. Once the global group
decides to commit a transaction t, each primary signs the
decision and broadcast (through the non-ordered channel) to
all the other primaries. Once a primary p has received f + 1
signatures for t, this is broadcasted to the nodes in n’s local
group, together with the t’s assigned timestamp. A receiving
node in a local group, only applies t, if its signed by f + 1
nodes of the global group and all transactions with a timestamp
smaller than t’s timestamp have already been applied.

2) Crash Faults: When a node crashes or is suspected, if
that node is not a primary, no special action is performed since
it is transparently handled by the atomic broadcast principle.
But, if the node is a primary (member of the global group),
corrective measures need to be performed. First a new primary
is elected from the local group of the faulty node. If the old

4



 0

 20

 40

 60

 80

 100

1 2 4

Th
ro

ug
hp

ut
 (K

 o
ps

/s
)

% writes

Neo4j
OrientDB

Titan
Sparksee

Mixed

Fig. 3: N-version programming.

 0
 20
 40
 60
 80

 100
 120
 140

Th
ro

ug
hp

ut
 (K

 o
ps

/s
)

Pessimistic
Globally-safe

Local-safe
Unsafe

Fig. 4: Read modes.

-50
-40
-30
-20
-10

 0
 10

4 8 12

Th
ro

ug
hp

ut
 

 p
en

al
ty

 (%
)

Number of replicas

Flat

Fig. 5: Hierarchical vs. flat.

primary is still active (and was just slower), it will remove
itself from the global group. If the old primary crashed, the
new primary of the local group pro-actively joins the global
group, obtains the delivery log of the global group, and reliably
broadcasts to the local group all messages that have not been
propagated to the local group by the faulty leader.

3) Tolerating Byzantine Nodes: There are two cases to
consider. First, if a primary behaves correctly locally but
wrongly globally. This will be detected by other primaries;
e.g., wrong signing or wrong behavior when executing the
underlaying atomic broadcast primitive, which will notify the
local group to which the faulty primary belongs. In turn, the
local group will elect a new primary that eventually will join
the global group. Second, when a the faulty primary behaves
correctly at the global group but fails to propagate the updates
to its local group. In this case, replicas of a given datacenter
could become stalled for a long period. In fact, this behavior
could only be detected by a client doing globally-safe reads
or writes. To speed up the detection of this faulty behavior,
the client proxy waits for f + 1 replies from each datacenter;
if those replies are missing it issues an accusation against the
primary of that datacenter that is sent to all members of the
corresponding local group. As in the first scenario, this will
trigger a leader change in the local group.

4) Tolerating Byzantine Datacenters: Fireplug can also be
configured to tolerate faults at the level of an entire datacenter,
as long as the deployment includes at least 3f +1 datacenters
or the datacenter offering multiple replicas to the global cluster
is not faulty. In fact, the protocol described in the previous
section tolerates the failure of f entire datacenters or of f
machines in one of the datacenters.

V. EVALUATION

In this section, we present the results of an experimental
study of Fireplug. We answer the following questions:
• How well does Fireplug perform in terms of throughput?
• How do the different read-only protocols perform?
• What are the performance advantages of the hierarchical

atomic broadcast when compared to a flat solution?
Our workloads are read-dominated, mimicking worloads

based on real usage of graph databases (such as Facebook’s
TAO [4]). The dataset has been synthetically generated us-
ing GMark [31] and has 100,000 nodes and approximately
230,000 relations. Each experiment has been executed three
times in order to avoid statistical errors, and the results pre-
sented are the mean of the throughput per second observed in
all servers during a 5 minutes execution interval. We discarded
the first and the last minute of each experiment, to avoid

effects of the warm-up and cool-down periods. Experiments
were carried out using the Grid’5000 testbed [32].

A. Throughput Experiments

We compare the performance of Fireplug using different
graph databases and “mixed” (all 4 databases together), when
varying the read/write ratio. We reach up to 4% of writes,
which is already 20 times the ratio observed by the Facebook
TAO’s team [4]. The goal is to understand the impact of writes
in Fireplug and how it behaves when multiple graph databases
coexist. We used a total of 4 replicas in a single datacenter,
tolerating one Byzatine fault.

As Figure 3 shows, Neo4j exhibits the best performance
compared to all other configurations. Nevertheless, the mixed
execution is, as expected, in between other configurations:
better than the two worst. This is not a surprise since we expect
the slowest graph database to slow down the system signifi-
cantly. Nevertheless, it exhibits slightly better throughput than
the slowest because read-only transactions do not usually need
to contact all replicas. Interestingly, when running the mixed
one, we noticed that balancing the load among the replicas—
as each performs differently—is of paramount importance to
achieve reasonable performance. The problem is that, if care
is not taken, one can overload a slow replica, leading all other
replicas to a severe slowdown. In this set of experiments, we
have manually tuned the load among replicas based on the
maximum performance each can handle.

B. Read-only Transactions

In this second experiment, we compare the performance of
our two optimistic read-only modes (locally-safe and globally-
safe) with a pessimistic mode, which executes read-only
transactions as update transactions by relying on the more
expensive atomic broadcast abstraction. As a baseline (bar
named unsafe), we also plot the throughput that a read protocol
that simply reads from the local replica, with no validation
afterwards, would achieve. Although such a read protocol may
return bogus values, as there is no cross-replica validation, it
serves as a throughput upper-bound.

We deploy Fireplug with 16 replicas, evenly distributed
among 4 datacenters. In this setting, Fireplug tolerates one
Byzantine node per datacenter, and the entire failure of one
datacenter. Our results (Figure 4) shows that the pessimistic
approach exhibits the worst performance. The globally-safe
mode already shows a significant improvement by handling
3× more operations per second, still providing the same guar-
antees. Interestingly, the locally-safe mode gets fairly close to
the unsafe mode. Therefore, if applications can tolerate reading

5



slightly stale data, embracing the locally-safe mode can bring
significant performance improvements.

C. Hierarchical vs. Flat

In this last experiment we compare our hierarchical architec-
ture with a flat architecture in which there is a unique atomic
broadcast group. For this, we vary the number of replicas from
4 to 12 and see the impact in throughput. Figure 5 shows
the throughput penalty incurred by the flat architecture when
compared to an equivalent experiment using the hierarchical
architecture that Fireplug includes. As one can observed, the
flat behaves very similarly to the hierarchical up to 8 replicas.
When we increase to 12, there is a severe throughput penalty
of 45%. We ran the flat version for more than 12 replicas, but
the system was crashing, indicating that it would be difficult
to manage more than 12 replicas in a single group.

D. Fireplug vs. Neo4j

Finally, we have also compared Fireplug with the native
replication mechanism of Neo4j (we omit the graphical rep-
resentation for lack of space). In our experiments, we were
not able to scale Neo4j to more than 8 replicas. Neo4j uses
a single-master replication scheme. We suspect that having
a single master is the cause of their scalability problems.
Interestingly, even with 8 replicas, Neo4j throughput was
already significantly lower than the one exhibit by Fireplug
(50% throughput penalty).

VI. CONCLUSION

We have presented Fireplug, a flexible architecture to build
robust geo-replicated transactional graph-databases. Fireplug
combines in a novel way ideas from N-version programming,
a hierarchical Byzantine-tolerant state-machine replication,
and a deferred update transactional protocol specialized for
graph databases to build a cohesive, flexible replicated graph
database that can be configured to tolerate different threats.
Our hierarchical architecture shows better performance and
scalability when compared to more traditionally used archi-
tectures such as flat and single-master. Furthermore, our eval-
uation shows that the optimistic read modes bring significant
performance gains by slightly weakening consistency.

Future work includes the integration of self-adjusting mech-
anisms such as a load-balancer to dynamically adjust the load
depending on the instantiated databases. We also plan on
studying whether our techniques could be applied under partial
replication, a more scalable setting.

Acknowledgments: This paper is dedicated to the memory of our
dear colleague Prof. Lau Cheuk Lung who motivated us to pursue
this work. This work was supported by the FCT via projects PTDC/
EEI-SCR/ 1741/ 2014 (Abyss) and UID/ CEC/ 50021/ 2013; and by
the CNPq/Brasil via project 401364/2014-3.

REFERENCES

[1] M. Newman, “The structure and function of complex networks,” Siam
Review, vol. 45, no. 2, pp. 167–256, 2003.

[2] Neo4j, “The graph foundation for the enterprise,” 2016. [Online].
Available: https://neo4j.com/

[3] OrientDB. (2016) Main page. [Online]. Available: http://orientdb.com/
[4] N. Bronson, Z. Amsden, G. Cabrera, P. Chakka, P. Dimov, H. Ding,

J. Ferris, A. Giardullo, S. Kulkarni, H. Li, M. Marchukov, D. Petrov,
L. Puzar, Y. J. Song, and V. Venkataramani, “TAO: Facebook’s dis-
tributed data store for the social graph,” ser. ATC’13.

[5] C. Vicknair and et al., “A comparison of a graph database and a relational
database: A data provenance perspective,” ser. ACM SE’10.

[6] Neo4j, “Our customers,” 2016. [Online]. Available: https://neo4j.com/
customers/

[7] OrientDB. (2016) Customers. [Online]. Available: http://orientdb.com/
customers/

[8] R. Langner, “Stuxnet: Dissecting a cyberwarfare weapon,” IEEE Security
Privacy, vol. 9, no. 3, pp. 49–51, May 2011.

[9] L. Mint. (2017) Beware of hacked ISOs. [Online]. Available:
http://blog.linuxmint.com/?p=2994

[10] S. Brilliant, J. Knight, and N. Levenson, “The consistent comparison
problem in n-version software,” ACM SIGSOFT Software Engeneering
Notes, vol. 12, no. 1, pp. 29–34, jan 1987.

[11] W. source. (2017) Top open source security vulnerabil-
itiess. [Online]. Available: https://www.whitesourcesoftware.com/
whitesource-blog/open-source-security-vulnerability/

[12] L. Lamport, “Paxos made simple,” ACM Sigact News, vol. 32, no. 4,
pp. 18–25, 2001.

[13] L. Lamport and M. Masa, “Cheap Paxos,” ser. DSN’04.
[14] M. Castro and B. Liskov, “Practical Byzantine fault tolerance and

proactive recovery,” ACM Trans. Comput. Syst., vol. 20, no. 4, pp. 398–
461, Nov. 2002.

[15] A. Bessani, J. Sousa, and E. E. P. Alchieri, “State machine replication
for the masses with BFT-SMART,” ser. DSN’14.

[16] P. J. Marandi, M. Primi, and F. Pedone, “Multi-ring Paxos,” ser. DSN’12.
[17] Y. Amir, C. Danilov, J. Kirsch, J. Lane, D. Dolev, C. Nita-Rotaru,

J. Olsen, and D. Zage, “Scaling Byzantine fault-tolerant replication to
wide area networks,” ser. DSN’06.

[18] Y. Amir, B. Coan, J. Kirsch, and J. Lane, “Customizable fault tolerance
for wide-area replication,” ser. SRDS’07.

[19] D. Sciascia, F. Pedone, and F. Junqueira, “Scalable deferred update
replication,” ser. DSN’12.

[20] F. Pedone and N. Schiper, “Byzantine fault-tolerant deferred update
replication,” Journal of the Brazilian Computer Society, vol. 18, no. 1,
pp. 3–18, 2012.

[21] A. Avizienis, “The n-version approach to fault-tolerant software,” IEEE
Transactions on Software Engineering, vol. SE-11, no. 12, pp. 1491–
1501, Dec 1985.

[22] M. Garcia, A. Bessani, I. Gashi, N. Neves, and R. Obelheiro, “Os
diversity for intrusion tolerance: Myth or reality?” ser. DSN’11.

[23] I. Gashi, P. Popov, and L. Strigini, “Fault tolerance via diversity
for off-the-shelf products: A study with sql database servers,” IEEE
Transactions on Dependable and Secure Computing, vol. 4, no. 4, pp.
280–294, Oct 2007.

[24] A. F. Luiz, L. C. Lung, and M. Correia, “MITRA: Byzantine fault-
tolerant middleware for transaction processing on replicated databases,”
SIGMOD Rec., vol. 43, no. 1, pp. 32–38, May 2014.

[25] I. Robinson, J. Webber, and E. Eifrem, Graph Databases. O’Reilly
Media, Inc., 2013.

[26] M. Herlihy and E. Koskinen, “Transactional boosting: A methodology
for highly-concurrent transactional objects,” ser. PPoPP’08.

[27] N. Herman, J. P. Inala, Y. Huang, L. Tsai, E. Kohler, B. Liskov, and
L. Shrira, “Type-aware transactions for faster concurrent code,” ser.
EuroSys’16.

[28] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski, “Conflict-free
replicated data types,” ser. SSS’11.

[29] Y. Sovran, R. Power, M. K. Aguilera, and J. Li, “Transactional storage
for geo-replicated systems,” ser. SOSP’11.

[30] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil, and P. O’Neil,
“A critique of ANSI SQL isolation levels,” ser. SIGMOD’95.

[31] G. Bagan, A. Bonifati, R. Ciucanu, G. H. . Fletcher, A. Lemay, and
N. Advokaat, “gMark: Schema-driven generation of graphs and queries,”
IEEE Transactions on Knowledge and Data Engineering, vol. 29, no. 4,
pp. 856–869, April 2017.

[32] Grid’5000, “Grid’5000, a scientific instrument [. . . ],” https://www.
grid5000.fr/, 2017.

6

https://neo4j.com/
http://orientdb.com/
https://neo4j.com/customers/
https://neo4j.com/customers/
http://orientdb.com/customers/
http://orientdb.com/customers/
http://blog.linuxmint.com/?p=2994
https://www.whitesourcesoftware.com/whitesource-blog/open-source-security-vulnerability/
https://www.whitesourcesoftware.com/whitesource-blog/open-source-security-vulnerability/
https://www.grid5000.fr/
https://www.grid5000.fr/

